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Abstract. Several models based on the diffusion-limited aggregation (DLA) model were proposed and their
scaling properties explored by computational and theoretical approaches. In this paper, we consider a new
extension of the on-lattice DLA model in which the unitary random steps are replaced by random flights
of fixed length. This procedure reduces the screening for particle penetration present in the original DLA
model and, consequently, generates new pattern classes. The patterns have DLA-like scaling properties at
small length of the random flights. However, as the flight size increases, the patterns are initially round
and compact but become fractal for sufficiently large clusters. Their radius of gyration and number of
particles at the cluster surface scale asymptotically as in the original DLA model. The transition between
compact and fractal patterns is characterized by wavelength selection, and 1/k noise was observed far from
the transition.

PACS. 05.40.Fb Random walks and Levy flights – 05.50.+q Lattice theory and statistics (Ising, Potts,
etc.) – 05.10.Ln Monte Carlo methods

1 Introduction

Pattern formation is a field of great interest in the
Non-equilibrium Statistical Physics. In special, the
diffusion-limited aggregation (DLA) model [1] is a note-
worthy example in which a very simple algorithm gen-
erates complex disorderly patterns. This model was re-
lated to several physical and biological applications, such
as electrodeposition [2], viscous fingering [3], bacterial
colonies [4], neurite formation [5], and, more recently,
tumor growth [6,7]. After two decades, the DLA scal-
ing properties yet remain not completely understood and
this model constitutes an actual and challenger theoretical
problem. In the original model [1], the simulation begins
with an initial seed at the center of the lattice. A par-
ticle, represented by a site of the lattice, is released at
a random distant point (the launching radius) and per-
forms an on-lattice random walk. If the particle visits a
neighbor site of the initial seed, it joins irreversibly to
this site. If the distance of the particle to the cluster is
too large, the particle is excluded and a new one is re-
leased from the launching circle. Successive new particles
are released from a new random distant point and walk
at random until they find the cluster neighborhood. This
algorithm is inefficient and clusters containing just a few
thousand particles can be generated with a considerable
computational effort. However, much more efficient algo-
rithms can be used in order to grow clusters with more
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than 108 particles for lattices [8,9] and off-lattices [9,10]
DLA models.

Due its importance as a fundamental model, several
variants of the DLA model were proposed [11]. In spe-
cial, models focusing its screening properties had remark-
able interest. For example, Meakin investigated a model
in which the random walks (trajectories with fractal di-
mension 2.0) of the DLA model are replaced by frac-
tal trajectories (Levy flights or Levy walks) [12]. As the
fractal dimensions of the trajectories decrease, the parti-
cles become more penetrating and, consequently, the DLA
screening effects less intensive. As a consequence, the frac-
tal dimensions of the clusters increase and their branches
become denser. Also, drift-diffusion-limited aggregation
models, in which a particle follows radially biased ran-
dom walks toward [13] and away [14] from the initial
seed particle, were considered. The former case generates
DLA-like clusters on shorter length scales and circular-
dense patterns, with fractal dimension 2.0 on longer length
scales as the drift probability increases. The later case also
generates DLA-like clusters on shorter length scales, but
eccentric patterns are generated on longer length scales,
with fractal dimensions close to 1.0. Moreover, in both
cases the patterns are sparse containing several internal
holes. In order to generate viscous fingering patterns, sev-
eral models introducing surface tension and surface relax-
ation effects in the DLA model were proposed [15–18]. In
these models, a sticking probability dependent of the local
curvature for the particles arriving at the surface of the
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aggregate is assumed. If the particle does not stick to the
cluster, it continues diffusing. Again, the DLA screening
is weakened since the particles do not stick with proba-
bility 1. Depending on the surface tension, these models
generate Eden-like round and compact patterns [19] on
shorter length scales that become branched for asymptot-
ically large clusters.

In this paper, we present a new extension of the lat-
tice DLA model in which the unitary random steps are
replaced by random flights of fixed length. This procedure
allows the particles to penetrate the screening present in
DLA clusters and, consequently, generates new pattern
classes. In Section 2, the model and the computational
algorithms are described. In Section 3 the model results
are presented and discussed. Finally, some conclusions are
drawn in Section 4.

2 Model and methods

In the modified DLA model presented in this paper, the
particles perform off-lattice random flights whose step
length is given by ∆ = δa, where a is the lattice constant
(assumed unitary) and δ ≥ 1 is the unique model parame-
ter. Notice that flights substitute walks and, consequently,
at each step the particle occupies a random position in a
hypersphere of radius δ centered on its initial position.
Thus, depending on the δ value, a particle near to the
border of the aggregate can reach its inner regions forbid-
den to particles executing normal random walks. For sake
of simplicity, the particles of the aggregate lie on a regular
square lattice. Two conditions determine when the flight-
ing particles finish their trajectories becoming part of the
aggregate. If a particle visits a nearest neighbor site of
the aggregate, it sticks irreversibly to this site (like in the
DLA model). But, if the particle reaches a site belonging
to the cluster, it realizes on-lattice random walks of uni-
tary step until finds an empty site, irreversible sticking on
it. Here, a surface relaxation, also present in the sticking
probability dependent models [15–18], was introduced. In
order to determine when a particle visits a site, its lattice
coordinates are defined as the nearest integers associated
to its real coordinates. The particular case δ = 1 must
reproduce the semi-lattice DLA model [20].

To optimize the algorithm efficiency some procedures
were adopted. The random trajectories started at a
launching circle of radius Rstart = R0 + 5δ centered on
the initial seed. Here, R0 is the maximum distance of a
site of the aggregate from the center of the lattice and the
quantity 5δ warranties that the particle realizes some steps
before it reaches the aggregate. This procedure is justified
since a random walker released far outside the launch-
ing circle will first intercept it at a random position with
equal probability [11]. A killing radius Rkill = 100δR0,
proportional to the flight length, was defined. If a random
walker cross the circle of radius Rkill centered on the initial
seed it is discarded. Also, we used a standard method to
speed up the simulations [11], which consists in allow the
particles outside the launching circle take long steps ξout

(longer than δ). However, these long steps cannot bring

Fig. 1. Optimized DLA model. All the radius defined in the al-
gorithm are shown: the delimiting aggregate (R0), the launch-
ing (Rstart) and sinking (Rkill) circles, as well as the circles
that illustrate the long flights used when the particles are dis-
tant from the aggregate whether inside (ξin) or outside (ξout)
the launching circle. The center of the lattice is depicted in
black and the other sites of the aggregate are represented by
white squares. Also, two trajectories, one toward the aggregate
and the other in which the particle reaches the killing radius,
are drawn.

up the particle to inside the launching circle. Thus, the
step length was chosen as ξout = max(R − Rstart − 5δ, δ),
where R is the distance of the random walker from the cen-
ter of the lattice. Following the last definition, one can see
that ξout > δ only for R > Rstart+5δ. In addition, even in-
side the cluster delimiting circle exit large empty regions.
So, we adapted a algorithm used by Ball and Brady [8], in
which the random walker jumps a distance ξin if the re-
gion delimited by the circle of radius ξin centered on the
walker does not contain occupied sites nor sites neighbor-
ing the cluster. Thus, the radius ξin must define a region
containing only sites from which the random walker can-
not reach the aggregate by a single step. Therefore, ξin

was determined by the following procedure. The border of
a sub-lattice of linear size l = max(40, R0/10) centered on
the random walker is visited. If none part of the aggregate
was found, then the sub-lattice is empty and ξin = l/2 is
adopted. Otherwise, if any part of aggregate was found,
l is reduced by a half and the whole procedure is repeated
until found an empty sub-lattice or its size reaches the
value l < 5δ. In former case a ξ = l/2 is assumed and in
the latter a ξin = δ is adopted. Figure 1 shows a scheme
of the methods described in this paragraph.

As the step length δ increases the patterns become
denser and, consequently, the random walks over the ag-
gregate are very computational time consuming. Thus, for
δ > 20, the random walkers over the occupied regions were
also allowed to realize long steps if they are far away from
the border.
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3 Results and discussions

The DLA model with screening breakdown was simulated
in square lattices containing up to 12000×12000 sites and
flight lengths ranging in the interval 1 ≤ δ ≤ 100. The
maximum number of particles in the aggregates varied
from N ∼ 106, for smaller δ values, to N ∼ 108, for the
larger ones. In Figure 2, growth patterns generated by
the model with distinct δ values are shown. As the flight
length increases from δ = 1, the branches of the clusters
become denser and for larger δ values (δ = 40) compact
patterns, with a nearly regular shape, emerge. In order
to quantify the geometry of the clusters, their radius of
gyration Rg and the number of particles on the cluster
border S were evaluated. These quantities scale with the
number of particles as

Rg ∼ Nν (1)

and
S ∼ Nσ. (2)

Also, the fractal dimension is given by df = 1/ν. As ex-
pected, the particular case δ = 1 reproduces the semi-
lattice DLA model. The fractal dimension obtained from
the slope d log N/d logRg is df = 1.69 ± 0.03, a value
smaller than df = 1.715± 0.004 found for large off-lattice
DLA simulations [9]. However, it is a well-understood
fact that anisotropy effects of the square lattice reduce
the effective fractal dimension of larger clusters [20]. In-
deed, simulations using a recent method proposed by
Bogoyavlenskiy [21] to avoid the lattice anisotropy for
DLA clusters provide a fractal dimension df = 1.716 ±
0.022 for δ = 1 corroborating our previous claim.

New patterns emerge due to the weakness of the
DLA screening resultant from the increasing of the flight
lengths. This phenomenon can be qualitatively under-
stood through an analogy with the sticking probability
DLA models. In such models there is a correlation length λ
that increases as the sticking probability Pσ decreases.
Thus, the patterns are compact on smaller length scales
(� � λ) but have DLA-like scaling properties at longer
length scales (� � λ) [11]. In order to use this argument
for the DLA model with screening breakdown, we con-
sider that the effective penetration depth of the particles
in the sticking probability DLA models is proportional
to

√
1/Pσ. Indeed, 1/Pσ is the mean number of steps re-

alized by the particles in the nearness of the cluster border
before they attach to the cluster and the mean square dis-
placement of the random walker is proportional to the
number of steps. This depth can be associated with the
size of the flights δ and, consequently, the previous argu-
ments deduced for the sticking probability problem can
readily be extended to the present model.

The above mentioned length scales are neatly observed
in Figure 3, in which the surface sites of the growing clus-
ters for distinct numbers of particles are drawn. As one
can see, the more inner boundaries of Figures 3a and b
are initially Eden-like, exhibiting a round and rough bor-
der. As new particles are added to the clusters, their inter-
faces become progressively regular and, at a given stage,

Fig. 2. Growth patterns generated by the DLA model with
screening breakdown. These clusters were generated in square
lattices containing 2000×2000 sites. The aggregate with fewer
particles (δ = 1) contains 1.5 × 105 particles whereas the one
with the larger number (δ = 60) contains 2.8 × 106 particles.

Fig. 3. Cluster boundaries along the growth of the aggregate.
The central boundary represents a cluster containing 104 parti-
cles and the subsequent ones correspond to patterns after each
cluster size doubling. Patterns with 5 × 106 particles for (a)
δ = 20 and (b) δ = 40 are shown. In (c) the continuation of
the simulation for δ = 40 up to 3× 107 particles is shown. The
figure (c) was reduced 50% if compared with the figures (a)
and (b).
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Fig. 4. Radius of gyration Rg and the number of peripheral sites S as a function of the total number of particles N in the
cluster. In (a) the curves S × N are shown for different δ values. In (b) and (c) the collapsed curves of S and Rg, respectively,
are shown for δ ranging from δ = 9.0 up to δ = 100.

quasi-periodic finger-like structures are build up. At this
stage, the patterns are featured by a characteristic wave-
length spontaneously selected. However, this is a transient
behavior because the “sprouts” consecutively split gen-
erating fractal structures at long times as illustrated in
Figure 3c. In this figure, the sequence of the simulation
shown in Figure 3b after three doublings is drawn. Thus,
any compact pattern becomes fractal for sufficiently large
clusters. This behavior is analogue to that found in the
DLA models with sticking probabilities [15,16], but the
layer mechanisms are different from those involved in such
models. There, the local curvature of the surface, that is
explicitly included in those models, seems to develop a es-
sential rule, while in the present model only the screening
breakdown is taken in to account.

The radius of gyration Rg and the number of periph-
eral particles S are able to detect the crossover between
Eden-like and DLA-like patterns suggested by Figure 3. In

Figure 4a, plots of S as a function of the number of parti-
cles N for distinct flight length sizes δ are shown. For small
δ values a unique scaling law, in which S ∼ N , is observed
indicating that these patterns scale as the DLA model. As
δ is increased, the curves exhibit two distinct slopes sepa-
rated by a neat crossover. Below a characteristic number
of particles N×, the clusters scale as the Eden model, i.e.,
S ∼ N1/2, and scale as the DLA model above this value.
The simulations show that for δ > 8.0 N× increases with
δ as N× ∼ δα, with α = 3. In the inset of Figure 4a,
the curve N× against δ and the correspondent power law
fitting are shown. It is evident the quality of the fitting.
For δ < 8.0 the determination of the crossover becomes
difficult. An identical crossover was observed for the ra-
dius of gyration. Moreover, the number of peripheral sites
and the radius of gyration do not depend on the δ values
for N < N×, as indicated in Figure 4a. However, above
the crossover, both quantities increase as δ decreases.
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Fig. 5. Profiles of (a) the last but two and (b) the last contours shown in Figure 3b. (c) Profile of the last contour of Figure 3c.
The correspondent Fourier spectra are shown at right (d–f). The profiles are drawn in the same vertical scale whereas the
horizontal ones depend on the contour. In turn, the Fourier spectra were plotted by using the same horizontal and vertical
scales.

Indeed, we have that S ∼ δ−z1 and Rg ∼ δ−z2 . In Fig-
ures 4b and 4c the curves S/δγ and Rg/δγ against N/δα,
respectively, are plotted. The γ exponent was varied in
search for a very satisfactory collapse, and the best value
is γ ≈ 3/2. Using that the collapsed curves scale as in the
Eden model for N � N× and as in the DLA model for
N � N×, the following scaling relationships are defined

S ∼ N
1
2 f

(
Nσ− 1

2

δασ−γ

)

(3)

Rg ∼ N
1
2 f

(
Nν− 1

2

δαν−γ

)

(4)

where σ and ν are the exponents defined in equations (1)
and (2) for the original DLA model, i.e., σ = 1 and ν ≈
0.583. The scaling function f(x) is defined as

f(x) =
{

const. if x � 1
x if x � 1.

(5)

Thus, we have that z1 = ασ− γ = 3/2 and z2 = αν − γ ≈
0.249.

One remarkable feature of the present model is the
mode selection exhibited by the patterns at the compact to
fractal transition illustrated in Figures 3 and 4. In order to
analyze this feature, firstly we map the cluster contour in

a 1+1 profile, in which the heights represent the distance
of a point in the contour from the center-of-mass of the
pattern. In order to build the profile, the contour points
are sequentially visited in the clockwise direction and their
distances from the center-of-mass ri are determined. The
sequence (r1, r2, ..., rn) defines the profile. Secondly, we
calculated the Fourier spectra S(k) of the profile by us-
ing the standard FFT method. Here, k is the wavenumber
and 1/k the correspondent wavelength. In Figure 5, the
mapped profiles of the contours drawn in Figure 3 and the
correspondent Fourier spectra are shown. For the profile
correspondent to the pattern before the crossover (Figs. 5a
and 5d) no mode is selected and the observed low ampli-
tude wavenumbers indicate the onset of the instabilities
that will lead to the fingering shown in Figure 5b. The
Fourier spectrum of the cluster border when N ≈ N× is
characterized by the selection of a principal mode and ad-
ditional lower-amplitude modes as indicated in Figure 5e.
As the cluster increases, the selected wavenumber shifts to
the left, indicating a larger wavelength selection, and addi-
tional modes emerge in the Fourier spectrum. This results
are in qualitative agreement with fluid-fluid displacement
experiments for radial fingering patterns [22] and recent
experiments of grain-grain displacement in a Hele-Shaw
cell [23].

In the DLA-like scaling regime (N � N×) a wide
range of wavelengths is selected as suggested in Figure 5f.
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Fig. 6. Typical integrated power spectrum for profiles gen-
erated from the pattern contours. The flight length used was
δ = 10 range of and the fit is excludes very long and very short
wavelengths.

This indicates the presence of self-affine profiles character-
ized by 1/kζ noise, i.e., all wavelengths are present in the
Fourier spectra. Thus, the power spectrum of the profile
scales as

|S(k)|2 ∼ k−ζ, (6)

where ζ = 2H + 1 establishes the relationship between ζ
and the Hurst exponent H [11]. Since the power spectra
are noisy and the wavenumbers are, due the FFT regres-
sion, evenly spaced, it is hard to determine the power law
exponent. Therefore, we were led to consider the band-
integrated regression [24], in which the power spectrum
estimated by FFT is integrated over the wavenumber in-
tervals [k0, βk0], [βk0, β

2k0], [β2k0, β
3k0], and so on. So,

we computed the quantity

I(p) =
βp+1k0∑

k=βpk0

|S(k)|2 ∼ kη
p , (7)

where kp = βpk0 and η ≡ 1 − ζ ≡ H/2. In Figure 6, the
integrated power spectrum for simulations with δ = 10 is
shown. The η exponent varies during the growth of the
aggregate from the value η = 2 (H = 1), that charac-
terizes a flat profile, to the value η ≈ 1.35 (H ≈ 0.68),
indicating a positively persistent profile, far from the
crossover. Our simulations were not able to determine the
asymptotic η values for all distinct δ values studied due
to computational limitations (the maximum lattice size
simulated was 12000 × 12000). However, simulations for
δ ∈ [8, 18] provide approximately the same asymptotic η
value and, consequently, we conjecture that this exponent
is independent of δ. The relation between the Hurst ex-
ponent and the exponents associated to the DLA is not
trivial due to the conversion of self-similar contours in self-
affine profiles. Therefore, a careful analysis of the DLA
model will be necessary in order to determine this rela-
tion, but this would be a different paper. Moreover, it is

Fig. 7. Mean values of the fourth circular harmonic for dis-
tinct δ values. The number of samples used on the averages
varies from 100 for δ = 4 to 30 for δ = 24.

important to notice that for δ < 8 the pattern contours
cannot be mapped the in self-affine profiles because very
thin branches are present and the sequential mapping al-
gorithm used becomes undefined.

An important feature of the DLA model with screen-
ing breakdown is the formation of isotropic patterns
for large δ values. This is in marked contrast with the
anisotropic patterns generated for smaller δ values, a cen-
tral feature of on-lattice DLA models [11] (see Figs. 2
and 3). In order to quantify the cluster anisotropy, we
calculated the fourth circular harmonic 〈cos 4θ〉, where θ
is the angular position of the particle measured from the
initial seed position. The averages were done over all pe-
ripheral particles of up to 100 samples. This procedure
excludes the effects of internal compact regions. For the
original DLA model in a square lattices, the fourth har-
monic continuously increases as new particles are added to
the cluster [8], whereas a null value is found for isotropic
patterns. In Figure 7, 〈cos 4θ〉 is plotted as a function of
the number of particles. For smaller δ values (δ ≤ 16), the
clusters are initially isotropic, i.e., 〈cos 4θ〉 ≈ 0, but an
effective increasing anisotropy emerges during the clus-
ter growth. Such finds agree with the results obtained for
the original DLA model [8]. Nevertheless, concerning our
simulations, for larger δ values (δ ≥ 18) none effective
anisotropy was measured. One can argue that this result
may be a consequence of our computational limitations,
i.e., it did not allow us to generate sufficiently large clus-
ters for which a measurable anisotropy is present. How-
ever, we conjecture that these patterns are isotropic since
the characteristic size for which the lattice anisotropy
emerges grows continuously up to δ ≈ 16 and suddenly
diverges for δ > 18. Moreover, the clusters scale as the
off-lattice DLA model in the asymptotic limit, as shown
in Figure 4, reinforcing the idea that lattice effects are not
present.

The physical origin of anisotropy break is related to
the relaxation process of the particles when they reach the
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inner regions of the cluster. This can be easily verified with
a simple test using a modified Eden model. It is a well
known fact that, like DLA, the Eden model is strongly
affected by the lattice anisotropy, which can be neatly
observed with the noise reduced version of the model
[25,26]. This noise reduction consists of the occupation of
a growing site only after its selection for m times. In the
modified version of the Eden model, any cluster particle
can be chosen and a relaxation process equal to that used
in the present model determines the empty site that will
be occupied. The clusters generated by this model tend
to a perfectly round shape when m → ∞, in contrast to
the clusters generated by the Eden model that exhibit a
diamond shape.

4 Conclusions

In the present work, it was studied an extension of the
diffusion-limited-aggregation (DLA) model, in which the
screening effects were directly considered. The unitary
steps used in the random walks of the original DLA model
were replaced by random flights of fixed length δ. An in-
creasing δ leads to a decreasing screening for the penetra-
tion of the particles in the inner regions of the clusters.

The model generates DLA-like structures for small δ
values. However, for larger δ values the patterns have the
Eden model scaling properties on smaller length scales
but scale as the DLA model on longer length scales. The
compact-to-fractal transition was characterized by the ra-
dius of gyration Rg and the number of particles on the
border of the cluster S. Both quantities exhibit two neat
scaling regimes separated by a characteristic number of
particles N×, i.e., the patterns scale as the Eden model for
N � N× but scale as the DLA model for N � N×. From
a scaling analysis we found that N× ∼ δ−α, S ∼ δ−z1 and
Rg ∼ δ−z2 with α ≈ 3.00, z1 ≈ 1.50 and z2 ≈ 0.249.

When N ≈ N×, the patterns exhibit a quasi-periodic
finger-like structure characterized by the selection of a
principal and other additional lower-amplitude modes in
the correspondent Fourier spectra of the cluster bound-
ary. In turn, in the asymptotic DLA-like scaling regime
all wavelengths are present and, consequently, a self-affine
boundary, with Hurst exponent H ≈ 0.68 apparently in-
dependent on δ, was observed. Moreover, the simulations
strongly suggest that the lattice effects are not present for
large δ values.

I thank to M.L. Martins for extensive discussion and valuable
comments on the manuscript. This work was partially sup-
ported by the CNPq and FAPEMIG - Brazilian agencies.
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